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Abstract

Associations between clinical mastitis (CM) and the proportional distribution of patterns in

somatic cell count (SCC) on a herd level were determined in this study. Data on CM and SCC over a

12-month period from 274 Dutch herds were used. The dataset contained parts of 29,719 lactations

from 22,955 cows of different parities. In total, 207,079 SCC test-days were recorded with 5719 cases

of CM; 1561 cases were associated with environmental pathogens (ENV_CM), and 2681 with

contagious pathogens (CONT_CM). Definitions of patterns in SCC were based on 3, 4, or 5

consecutive test-day recordings of SCC that differentiated between short or longer periods of

increased SCC, and also between lactations with and without recovery. The distribution of those

patterns (relative to their maximum) varied among herds. The distribution of SCC patterns was

correlated with the incidence rate of CM. Herds with a relatively frequent quick recovery pattern had

a 2.5 times more chance of being classified in the upper quartile for CM. These herds also had 2.1

times more chance of being classified in the upper quartile for ENV_CM but only 0.4 times

for CONT_CM. Herds with a relatively frequent no recovery pattern had less chance (odds

ratio = 0.5) of being classified in the lower quartile for CONT_CM. Since the distributions of

SCC patterns were indicative for overall, environmental and contagious CM, the necessity to
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introduce pathogen-specific mastitis control programs in a herd could be determined based on the

mean incidences of SCC patterns in that herd.

# 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Mastitis-causing pathogens can be categorised into environmental and contagious

pathogens (Fox and Gay, 1993; Smith and Hogan, 1993). Escherichia coli is the most

important environmental pathogen (Smith and Hogan, 1993). The primary reservoir of

environmental pathogens is the environment of the dairy cow. Exposure of udder quarters

to these pathogens may occur at any time, independent of the presence of infections in herd

mates (Zadoks et al., 2001). The incidence rate of clinical mastitis (CM) associated with

environmental pathogens is mostly related to housing conditions, hygiene and milking

machine management (Bartlett et al., 1992; Barkema et al., 1999). Staphylococcus aureus

is the most important contagious pathogen (Fox and Gay, 1993), and its primary reservoir is

the infected animal or udder quarter, and its transmission is largely determined by the

milking procedure and the milking machine (Schukken et al., 1991; Barkema et al., 1999).

Streptococcus agalactiae and Streptococcus dysgalactiae are usually referred to as

contagious (Hillerton et al., 1995), but most other streptococci are considered to be

environmental pathogens (Smith et al., 1985; Pankey et al., 1987). However, cow-to-cow

transmission of Streptococcus uberis has also been reported (Zadoks et al., 2001), as well

as persistent E. coli mastitis with recurrent cases (Döpfer et al., 1999; Bradley and Green,

2001). Zadoks (2002) discussed the option of classifying mastitis-causing pathogens on a

sliding scale, where the balance of contagious and environmental transmission shifts

gradually, rather than using a species-based dichotomy.

A large number of control measures have been developed, and are combined in mastitis

control programs (Park and Morgan, 1981; Oliver and Mitchell, 1984). Procedures that

may be very successful in control or eradication of contagious mastitis, may not be

effective in the control of environmental mastitis, and vice versa (Neave et al., 1969; Fox

and Gay, 1993; Smith and Hogan, 1993). Standard mastitis control programs (Neave et al.,

1969) can decrease the prevalence of intramammary infections (IMI) with contagious

pathogens (Neave et al., 1969; Hillerton et al., 1995), but are less successful in preventing

new cases of CM from environmental pathogens (Schukken et al., 1990; Lam et al., 1997;

Barkema et al., 1999). Recommendations to control both contagious and environmental

pathogens have been combined in a new 10-point mastitis control program, issued by the

National Mastitis Council (2001).

Information about the lactation-average somatic cell count (SCC) is used as part of

mastitis control programs, but individual test-day SCCs can be used instead. Effective use

of SCC test-day records may be achieved by defining patterns in the SCC during the

lactation (De Haas et al., 2004). However, it has not been assessed whether these SCC

patterns provide more information on the pathogen-distribution on a farm, and the success

Y. de Haas et al. / Preventive Veterinary Medicine 67 (2005) 55–6856



of therapy than the lactation-average SCC. If they do, health management advice can then

be directed specifically on lowering the incidence rate of pathogen-specific CM, or

shortening the duration of infection. Therefore, the aim of this study was to determine

associations between incidence rates of pathogen-specific CM and the presence of patterns

in the SCC at the herd level.

2. Materials and methods

2.1. Herds

Records on CM were available from a longitudinal prospective cohort study for the

period from December 1992 until June 1994 on 274 Dutch farms (Barkema et al., 1998).

Lactating cows were housed in free-stall barns and milking parlours were double

herringbone or two-sided open tandem. All herds participated in a milk recording

system, and annual milk production quotas were between 300,000 and 900,000 kg. The

main breeds were Holstein-Friesian, Dutch-Friesian and Meuse-Rhine-Yssel. The

national milk recording system (NRS, Arnhem, The Netherlands) provided information

from the three- or four-week milk recordings, including: national cow identification,

breed, date of milk recording, date of calving, date of drying off, test-day milk yields and

SCC.

2.2. Sampling

Herd selection and sampling procedures were described previously (Barkema et al.,

1998). During the study period, farmers took milk samples from all quarters that, in their

opinion, had clinical signs of mastitis, such as abnormal texture and discoloration of the

milk, swelling and discoloration of the udder, increased temperature or pain of the quarter.

Quarter samples were stored in a freezer at the farm (at approximately �20 8C) and were

collected for bacteriological examination at intervals of 6–8 weeks. Bacteriological

culturing of milk samples was performed according to the standards of the National

Mastitis Council (Harmon et al., 1990). Briefly, 0.01 ml was cultured, and for each culture,

the number of colony-forming units of each of the bacterial species was counted. The data

included national cow identification number, date of mastitis occurrence, quarter infected,

and result of bacteriological culturing of milk sample. Two groups of pathogens were

defined: (1) contagious pathogens (CONT_CM) (Fox and Gay, 1993), consisting of S.

aureus, coagulase negative staphylococci and S. dysgalactiae, and (2) environmental

pathogens (ENV_CM) (Smith and Hogan, 1993), consisting of E. coli and S. uberis.

Intervals between cases of CM in the same quarter had to be �14 days for a CM to be

included as a new case (Barkema et al., 1998).

2.3. Data selection

Initially, valid records on CM and bacteriological characterisation were available on

47,563 lactations (De Haas et al., 2002a). For the present study, only the first 365 days of
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the study were selected from the dataset, because the aim of the study was to investigate the

possibilities of giving health management advice based on information from the past year

in a herd. Therefore, the final dataset consisted of 29,719 (parts of) lactations from 22,955

cows. In total, 207,079 SCC test-days were recorded. All cases of CM in the year of

observation were noted (n = 5719), of which 1561 were associated with environmental

pathogens, and 2681 with contagious pathogens. However, not every case of CM was

covered by these two groups, because some bacteriological examinations were culture-

negative (14.8% of all bacteriological examinations), or because the case of CM was

associated with other pathogens, such as Corynebacterium bovis or Klebsiella spp., or

because the samples were contaminated (11.3% of all collected samples). In total, 15% of

all cases of CM were associated with cultures of both environmental and contagious

pathogens, and these cases were scored for both pathogens.

2.4. Definitions

2.4.1. Mastitis

The herd incidence rates for CM, CONT_CM and ENV_CM were expressed per cow-

day at risk. Cow-days at risk was calculated as the total number of days during the year of

observation that each cow was in milk. For each case of CM 14 days was substracted from

the days in milk.

2.4.2. Patterns of SCC

Patterns of SCC were used to distinguish lactations with short or longer periods of

increased SCC, and also lactations with and without recovery from the increase in SCC.

Healthy and recovered cows were assumed to have less than 200,000 somatic cells/ml

(Dohoo and Leslie, 1991), and cows with intramammary infections were assumed to have

more than 500,000 cells/ml (Lam et al., 1997). Therefore, test-day recordings of SCC were

categorised as low when the uncorrected SCC measured was < 200,000 cells/ml, and

when the uncorrected SCC was > 500,000 cells/ml, the test-day recording of SCC was

categorised as high. An intermediate category was defined for SCC �200,000 and

�500,000 cells/ml.

Five patterns of SCC were defined based on these three categories.

- The first SCC pattern (P1) is referred to as a ‘‘quick recovery pattern’’, and described

consecutive test-day recordings of SCC that were low–high–low.

- The second pattern (P2) is referred to as a ‘‘slow recovery pattern’’ and described test-

day recordings of SCC that were low–intermediate–high–intermediate–low, respec-

tively.

- The third pattern (P3) is referred to as a ‘‘no recovery pattern’’ and denoted a test-day

with a low SCC followed by four test-days with high SCC.

- The fourth pattern (P4) is referred to as a ‘‘shorter no recovery pattern’’ and denoted 4

test-day recordings of SCC that were low, high, high, and high.

- The fifth pattern (P5) is referred to as the ‘‘shortest no recovery pattern’’ and denoted 3

test-day recordings of SCC that were low, high, and high, consecutively.
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The above patterns were determined per cow (De Haas et al., 2004). Only fully

completed patterns were considered, and more than one pattern could have been present

per cow. The numbers of SCC patterns were 2662, 361, 860, 1082 and 2353 for the patterns

1–5, respectively.

The proportional distribution of each SCC pattern refers to the ratio of the number of a

SCC pattern observed during the year of observation to the maximum feasible number of

occurrences of that SCC pattern in the population at risk. The maximum feasible number of

SCC patterns depended on the number of consecutive test-day records of individual cows

and on the length of the patterns. For example, if a cow had 15 consecutive test-day records,

and P1 required 3 test-day recordings, then for any pattern starting up to the 13th test-day it

is possible to assign it as a P1 or not. A pattern starting on the 14th or 15th test-day can not

be finished completely: therefore, the maximum feasible number of P1’s for this cow would

be 13. These maximum feasible number of SCC patterns of the individual cows were

summed per herd. For instance, when a herd with 100 cows that participate in the 3-week

milk-recording, each cow could have 15 test-day recordings per lactation. Therefore, in

theory, 1300 P1’s could have been observed, but the proportional distribution describes

how many P1’s were actually observed, relative to this number.

2.4.3. Current SCC parameters

Current SCC parameters are the number of new infections (INF), and the total number

of test-days with SCC recorded above 250,000 cells/ml (H_SCC). An INF was defined by a

low SCC (�250,000 cells/ml) shifting to a high (>250,000 cells/ml) test-day recording.

The proportional distribution of INF was calculated per herd by dividing the total number

of INF by the maximum feasible number of INF that could have been determined in that

herd. The proportional distribution of H_SCC was calculated by dividing the number of

test-days with > 250,000 somatic cells/ml by the total number of SCC test-day recordings

in a herd.

2.5. Statistical analyses

The variation between herds of the proportional distribution of the SCC patterns and of

the current SCC parameters was investigated using the 10, 25, 50, 75 and 90% deciles.

To compare herd rankings, spearman rank correlations between mastitis rates and

proportional distributions of SCC patterns and current SCC parameters were estimated

using PROC CORR in SAS (SAS/STAT1, 2001).

The incidence rate of CM was described at different levels of both P1 and P5

distributions. It was decided to analyse the effect of these two SCC patterns because they

were equally long and differentiated between a quick and no recovery from the infection.

To accomplish this, an interaction between a spline describing the incidence rate of CM as

a function of P1 or P5 was modeled. A smoothing spline function was fitted in AS-REML

(Gilmour et al., 2002). Usually, a spline function is used for smoothing data points and the

function allows maximum flexibility and assumes no prescribed curvature. A spline is

constrained so that the function and its first two derivatives are continuous at the

breakpoints between one segment and the next. The ‘predict’ statement in AS-REML was
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used to predict the incidence rates of the mastitis outcomes at different values of the ratios

of SCC patterns.

To test if there was an association between SCC pattern frequency and the occurrence of

CM, statistical analyses were carried out using logistic regression in SAS (PROC

LOGISTIC; (SAS/STAT1, 2001)). Odds ratios (OR) were calculated between the 25% of

herds with the lowest CM and the 25% herds with the lowest or highest ratio of SCC

patterns. Similar analyses were performed with the 25% herds with the highest CM. The

25% herds with the lowest CM were compared to the rest (i.e. 75%), and in a separate

analysis, the 25% herds with the highest CM were compared to the rest. The predictors

indicated whether or not a herd was classified in the best (b) or worst (w) 25% of herds

based on the SCC patterns.

3. Results

Ratios of SCC patterns varied among herds (Fig. 1). The distribution of the slow

recovery and no recovery patterns seemed to be negative binomially distributed, and that of

the quick recovery pattern appeared to be almost normally distributed. Also, the

proportional distribution of the SCC patterns and the current SCC parameters differed

among the 10, 25, 50, 75 and 90% deciles (Table 1).

The estimated Spearman rank-order correlations among SCC patterns indicated

that herd rankings differed for the separate SCC patterns (Table 2). Low correlations

existed between the quick or slow recovery patterns and the other SCC patterns,

and moderate to high correlations existed between all 3 no recovery patterns and the other

SCC patterns.
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The Spearman rank-order correlations between SCC patterns and CM in Table 3

indicated that the strongest association for the incidence rate of CM was with the

distribution of P1 (0.15); this was also true for ENV_CM (0.19). The distribution of all

three no recovery patterns were positively associated with the incidence rate of

CONT_CM.

The estimated associations between the currently used SCC parameters (INF and

H_SCC) and the incidence rate of CONT_CM were higher than the associations with

ENV_CM (Table 3). The association of INF with the incidence rate of ENV_CM was close

to zero, and the association with H_SCC was slightly negative (Table 3).
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Table 1

Distribution of mastitis, SCC patterns, and SCC parameters in 274 herds in The Netherlands, 1992–1993

No. of cases Mean Upper limit of incidence rate (%)

10 25 50 75 90

Mastitis outcomesa

CM 5719 0.0006 0.0002 0.0003 0.0005 0.0008 0.0011

ENV_CM 1561 0.0002 0.0000 0.0001 0.0002 0.0003 0.0005

CONT_CM 2681 0.0003 0.0001 0.0002 0.0003 0.0006 0.0009

SCC patternsb

P1: quick recovery 2662 0.020 0.008 0.013 0.019 0.028 0.035

P2: slow recovery 361 0.004 0.000 0.000 0.003 0.006 0.009

P3: no recovery 860 0.009 0.000 0.003 0.007 0.012 0.019

P4: shorter no recovery 1082 0.011 0.000 0.004 0.009 0.015 0.022

P5: shortest no recovery 2353 0.019 0.006 0.010 0.018 0.025 0.033

SCC parametersc

INF: new infections 12641 0.069 0.042 0.057 0.071 0.084 0.098

H_SCC: high SCC 41253 0.195 0.089 0.135 0.193 0.251 0.298

a Number of cases of clinical mastitis per cow-day at risk.
b See Section 2.4.2 for description of SCC patterns.
c See Section 2.4.3 for description of SCC parameters.

Table 2

Spearman rank-order correlations between SCC patterns and SCC parameters (standard errors in parentheses) in

274 herds in The Netherlands, 1992–1993

P1 P2 P3 P4 P5 INF

SCC patternsa

Quick recovery (P1)

Slow recovery (P2) 0.14 (0.06)

No recovery (P3) �0.03 (0.06) 0.15 (0.06)

Shorter no recovery (P4) 0.03 (0.06) 0.17 (0.06) 0.85 (0.02)

Shortest no recovery (P5) 0.31 (0.06) 0.10 (0.06) 0.65 (0.04) 0.74 (0.04)

SCC parametersb

New infections (INF) 0.29 (0.06) 0.24 (0.06) 0.36 (0.06) 0.44 (0.05) 0.50 (0.05)

High SCC 0.07 (0.06) 0.20 (0.06) 0.63 (0.04) 0.70 (0.03) 0.71 (0.03) 0.76 (0.03)

a See Section 2.4.2 for description of SCC patterns.
b See Section 2.4.3 for description of SCC parameters.



In general, combined information on the distributions of both the quick recovery and

shortest no recovery pattern seemed to be informative for CM, ENV_CM and CONT_CM.

The vertical ‘bars’ in Fig. 2 show that the incidence rate of overall CM was increasing

with increasing values of P1 (x-axis), but not when P5 was increasing (y-axis). Similarly,

the highest incidence rate of ENV_CM was estimated when P1 was high (Fig. 3).
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Table 3

Spearman rank-order correlations between mastitis, SCC patterns and SCC parameters (standard errors in

parentheses) in 274 herds in The Netherlands, 1992–1993

Mastitis outcomesa

CM ENV_CM CONT_CM

SCC patternsb

Quick recovery 0.15 (0.06) 0.19 (0.06) 0.02 (0.06)

Slow recovery 0.04 (0.06) 0.01 (0.06) 0.04 (0.06)

No recovery 0.08 (0.06) �0.06 (0.06) 0.13 (0.06)

Shorter no recovery 0.04 (0.06) �0.03 (0.06) 0.17 (0.06)

Shortest no recovery �0.00 (0.06) �0.02 (0.06) 0.19 (0.06)

SCC parametersc

New infections 0.09 (0.06) 0.01 (0.06) 0.20 (0.06)

High SCC 0.01 (0.06) �0.06 (0.06) 0.19 (0.06)

a Mastitis outcomes are the incidence rates of clinical mastitis (CM), CM associated with environmental

pathogens (ENV_CM) and CM associated with contagious pathogens (CONT_CM).
b See Section 2.4.2 for description of SCC patterns.
c See Section 2.4.2 for description of SCC parameters.

Fig. 2. Incidence rates of overall clinical mastitis vs. spline functions (and their interaction) for the distribution of

the quick recovery pattern and the distribution of the shortest no recovery pattern. Data from 274 herds in The

Netherlands, 1992–1993, are used.
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Fig. 3. Incidence rates of clinical mastitis associated with environmental pathogens vs. spline functions (and their

interaction) for the distribution of the quick recovery pattern and the distribution of the shortest no recovery

pattern. Data from 274 herds in The Netherlands, 1992–1993, are used.

Fig. 4. Incidence rates of clinical mastitis associated with contagious pathogens vs. spline functions (and their

interaction) for the distribution of the quick recovery pattern and the distribution of the shortest no recovery

pattern. Data from 274 herds in The Netherlands, 1992–1993, are used.



However, Fig. 4 shows that occurrences of CONT_CM mainly seemed to be indicated by

an absence of P1, and to a lesser extent by the presence of P5, because the highest incidence

rate of CONT_CM was estimated when P1 was very low. Therefore, a high frequency of P1

could be associated with high incidences rates of CM and ENV_CM, and a low frequency

of P1 with high incidence rates of CONT_CM. The results shown in Figs. 2–4 correspond

with the estimated correlations in Table 3 between the quick recovery and shortest no

recovery pattern and CM, ENV_CM and CONT_CM.

A herd classified in the upper quartile of the P1 distribution had 2.5 times more chance

to belong to the upper quartile for CM as well (Table 4). When a herd belonged to the lower

quartile for P1, it had a 2.1 times higher chance to be classified as a herd in the upper

quartile for ENV_CM, and, in contrast, a reduced chance to be classified as a herd with a

high incidence of CONT_CM (OR = 0.4). A herd with a high presence of P5 had a low

chance of being classified in the lowest quartile for CONT_CM (OR = 0.5).

The OR for the current SCC parameters indicate that they better distinguish between the

25% best and worst herds with respect to CONT_CM than with respect to ENV_CM. A

herd with a low proportion of test-day recordings of SCC >250,000 cells/ml had a high

chance of being classified in the lowest quartile for CONT_CM (OR = 1.8).

4. Discussion

Before starting a mastitis control program, it is important to first analyse the herd

situation. The current SCC parameters are: (1) bulk milk somatic cell count (BMSCC); (2)

percentage of cows with H_SCC; (3) percentage of cows with INF; and (4) culling rate

because of mastitis. Additionally, evaluation of the distribution of mastitis-causing

pathogens can be informative. However, in 1997 only approximately 10% of the herds

sampled cases of subclinical mastitis on a regular basis, and cases of CM were even less
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Table 4

Odds ratios indicating the chance of being classified as one of the best (b) or worst (w) 25% of herds for occurrence

of clinical mastitis (CM), CM associated with environmental pathogens (ENV_CM), and CM associated with

contagious pathogens (CONT_CM)

SCC patternsa SCC parametersb

P1 (b) P1 (w) P5 (b) P5 (w) INF (b) INF (w) H_SCC (b) H_SCC (w)

Mastitis outcomes

CM (b) 1.7 0.4 1.5 0.5 2.5* 0.8 1.6 1.1

CM (w) 0.8 2.5* 0.9 1.1 0.6 1.1 0.7 0.7

ENV_CM (b) 1.8* 0.6 0.8 1.0 1.3 0.9 1.0 1.1

ENV_CM (w) 0.6 2.1* 1.4 0.9 1.1 0.8 1.2 0.4*

CONT_CM (b) 1.5 0.4* 1.7 0.5* 2.5* 0.6 1.8* 0.7

CONT_CM (w) 1.4 1.2 0.6 1.8 0.7 1.4 0.4* 1.4

Predictors were classified in the best (b) or worst (w) 25% of the herds with respect to the quick or shortest no

recovery distributions and of the current SCC parameters.
a P1: quick recovery pattern, P5: shortest no recovery pattern.
b INF: new infections, H_SCC: test-day recordings of SCC >250,000 cells/ml.
* Significantly different from 1, at p < 0.05.



frequently sampled in The Netherlands (Sampimon, 1997). As a result, information on

bacteriological sampling is unfortunately not often present. The results in the current

study, however, indicate that the presence of patterns of SCC provide information on

the incidence of both CONT_CM and ENV_CM. The major advantage of using SCC

patterns is that since test-day recordings of SCC are freely available to all farmers that use

SCC recording, a knowledge of SCC patterns may facilitate the implementation of

pathogen-specific mastitis control programs, and our results are discussed against this

background.

4.1. Comparison of SCC patterns with current SCC parameters

The estimated correlations in the current study show that the distribution of the current

SCC parameters are mainly indicative of CONT_CM status, but not so much for

ENV_CM. This is in agreement with earlier statements that the standard mastitis control

program is successful in decreasing the prevalence of intramammary infections with

contagious pathogens, but less successful in preventing new cases of CM with

environmental pathogens (Hillerton et al., 1995). However, patterns in SCC seem to

provide information on both CONT_CM and ENV_CM. Namely, the distribution of the

quick recovery pattern is more strongly correlated to the incidence rate of ENV_CM than

the current SCC parameters. Furthermore, the correlation between the distribution of the

shortest no recovery pattern and CONT_CM is similar to those between the current SCC

parameters and CONT_CM. Therefore, information on the distribution of a combination of

SCC patterns might indicate the occurrences of both CONT_CM and ENV_CM.

In the current study, it is shown that occurrences of ENV_CM are mainly indicated by

the presence of quick recovery patterns, and to a lesser extent by the absence of no recovery

patterns. This was expected, since cases of ENV_CM are typically acute cases (Vaarst and

Enevoldsen, 1997). On the other hand, occurrences of CONT_CM seem to be mainly

indicated by an absence of the quick recovery pattern, and to a lesser extent by the presence

of the shortest no recovery pattern. One explanation could be that cases of CONT_CM are

often characterised by a long duration and high SCC (Sears et al., 1990; Daley et al., 1991),

and therefore, the presence of quick recovery patterns is unlikely.

Because of the definition of the no recovery SCC patterns, a cow with P5, will also have

a P4 and P3 recorded. This overlap in the definitions causes strong correlations between P3,

P4 and P5. Therefore, that herds that are ranked high for one of the no recovery patterns, are

also ranked high for the other no recovery patterns. This is also the reason why the

distribution of any of the three no recovery patterns are all equally informative at ranking

the herds for the occurrence of CONT_CM.

4.2. Application of SCC patterns

Based on the mean distribution of SCC patterns in a herd, the necessity to introduce

pathogen-specific mastitis control programs in a herd, consisting of adequate guidelines to

control the predominant type of mastitis, can be determined. To be able to present adequate

mastitis control guidelines, it is necessary to have an overview of all test-day recordings of

SCC in a herd. Besides, comparing herds, classifying them in the upper or lower quartile of
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the herds, might be informative. Progress might, therefore, be obtained when the patterns in

SCC are applied by national milk recording systems, because it is relatively easy for them

to provide an overview on each test-day of the patterns in a herd. Improvement of the

possibilities for using the information for management advice, might be achieved by

publishing the patterns in SCC for heifers and older cows separately. Differences in the

patterns in SCC around a case of pathogen-specific CM between heifers and older cows

were shown in an earlier study (De Haas et al., 2002b). An even further optimisation might

be achieved by publishing only the distribution of SCC patterns in early lactation as 90% of

most pathogen-specific cases of CM have occurred before 200 DIM (De Haas et al.,

2002b). Therefore, analysing only the first part of the lactation might increase the

information in distribution of SCC patterns as they are expected to occur around the cases

of CM. Furthermore, it might be worthwhile to look at other definitions of SCC patterns.

For example, analysing SCC and CM as two traits that are continuous over time and using a

variance and covariance matrix to describe the association between variation in SCC and

incidence of CM. However, to investigate this, an even more advanced technique (like a

random regression model) has to be implemented. With random regression test-day

models, deviations from the standard curve are analysed. These deviations from the

standard curve can then be specified more precisely as either the rate of increase or

decrease in SCC, or the slope of increase or decrease in SCC. These two parameters are

derivations of either the first or second half of the SCC patterns, and therefore, the patterns

investigated in the current study are a foretaste for quantitative parameters of SCC to be

defined in further studies.

5. Conclusions

The major advantage of using patterns in SCC, over bacteriological culture of cases of

CM, is that they are freely available to all farmers that use SCC recording. Information on

both the quick recovery and shortest no recovery pattern could therefore easily be included

in mastitis control programs that aim to capture the full scope of environmental and

contagious mastitis-causing pathogens. However, it should be kept in mind that the division

of pathogens into environmental and contagious is not absolute. Next to the ability to

distinguish between environmental and contagious mastitis, the SCC patterns provide

additional information on, for example (spontaneous or therapeutic) cure. This suggests

that patterns in SCC are useful as basic tools for health management advice. Based on the

distribution of SCC patterns, the necessity to introduce pathogen-specific mastitis control

programs can be determined.

Acknowledgements

This study was financially supported by NRS, Dairy Commodity Board, and Dutch

Ministry of Agriculture, Nature Management and Fisheries. NRS is acknowledged for

providing data on milk recordings. The authors thank Pim Brascamp and Gerben de Jong

for critical reading the manuscript and their useful comments on the manuscript.

Y. de Haas et al. / Preventive Veterinary Medicine 67 (2005) 55–6866



References

Barkema, H.W., Schukken, Y.H., Lam, T.J.G.M., Beiboer, M.L., Benedictus, G., Brand, A., 1999. Management

practices associated with the incidence rate of clinical mastitis. J. Dairy Sci. 82, 1643–1654.

Barkema, H.W., Schukken, Y.H., Lam, T.J.G.M., Beiboer, M.L., Wilmink, H., Benedictus, G., Brand, A., 1998.

Incidence of clinical mastitis in dairy herds grouped in three categories by bulk milk somatic cell counts. J.

Dairy Sci. 81, 411–419.

Bartlett, P.C., Miller, G.Y., Lance, S.E., Heider, L.E., 1992. Managerial determinants of intramammary coliform

and environmental streptococci infections in Ohio dairy herds. J. Dairy Sci. 75, 1241–1252.

Bradley, A.J., Green, M.J., 2001. Adaptation of Escherichia coli to the bovine mammary gland. J. Clin. Microbiol.

39, 1845–1849.

Daley, M.J., Oldham, E.R., Williams, T.J., Coyle, P.A., 1991. Quantitative and qualitative properties of host

polymorphonuclear cells during experimentally induced Staphylococcus aureus mastitis in cows. Am. J. Vet.

Res. 52, 474–479.

De Haas, Y., Barkema, H.W., Veerkamp, R.F., 2002a. Genetic parameters of pathogen-specific incidence of

clinical mastitis in dairy cows. Anim. Sci. 74, 233–242.

De Haas, Y., Barkema, H.W., Veerkamp, R.F., 2002b. The effect of pathogen-specific clinical mastitis on the

lactation curve of somatic cell count. J. Dairy Sci. 85, 1314–1323.
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